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Abstract: Process capability indices (PCIs) are essential tools for quality assessment, yet existing 

methods face critical limitations. Traditional capability analysis relies on fixed classification standards 

(inadequate, capable, satisfactory, superior) that lack sufficient granularity for continuous improvement 

and do not align with Six Sigma methodology, now dominant in quality management. Furthermore, 
conventional approaches using point estimates fail to account for sampling uncertainty, potentially 

leading to erroneous capability conclusions. This study develops a Six Sigma-based smaller-the-better 

process capability analysis model (SBPCAM6σ) that addresses these limitations. The model establishes 

mathematical relationships between Six Sigma performance levels (3σ, 4σ, 5σ, 6σ) and integrated 

capability standards (C₀ values) for multi-characteristic products, creating a framework with four 

parallel decision lines that enable graduated performance assessment. By integrating joint confidence 

block (JCB) methodology, the approach explicitly acknowledges sampling uncertainty rather than 
presenting spurious precision through point estimates. Application to a 92-octane gasoline quality 

control case demonstrates the framework's practical advantages. Compared with single-threshold 

methods, SBPCAM6σ provides more precise problem severity identification, transparent uncertainty 

communication, and graduated improvement targets aligned with organizational Six Sigma initiatives. 

The framework preserves valuable JCB methodology while extending capability analysis to support 
systematic continuous improvement with contemporary quality management practices. 
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1. Introduction 
 
Process capability indices (PCIs) have become essential quality assessment tools since Juran 

(1974) established their foundational framework. The smaller-the-better index Cpu is particularly 
relevant for quality characteristics where lower values indicate superior performance, such as 
defect rates, contamination levels, or dimensional deviations.  
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Modern products possess multiple quality characteristics that must simultaneously meet 
specifications. Chen et al. (2006) demonstrated that multi-characteristic products require 
individual characteristics to achieve higher capability levels than single-characteristic items. 
Ouyang et al. (2013) developed the integrated capability index C₀ to determine minimum 
individual characteristic requirements for multi-process products. Various multi-process 
capability analysis methods have emerged, including Singhal's (1990) MPPAC, Pearn and 
Shu's (2003) modified Cpk MPPAC, and Chen and Chen's (2007) AMPPAC. Hsu (2017) 
developed SBPCAM incorporating joint confidence blocks (JCB) to address sampling 
uncertainty in practical inspection scenarios. 

Existing methods face a critical limitation: fixed classification standards categorizing 
processes as inadequate (c < 1.00), capable (1.00 ≤ c < 1.33), satisfactory (1.33 ≤ c < 1.50), 
or superior (c ≥ 2.00) (Pearn and Chen, 1997). These standards present three drawbacks. 
First, four discrete levels lack granularity for continuous improvement. Second, large gaps 
between thresholds provide limited intermediate milestones. Third, fixed standards do not 
align with Six Sigma methodology's progressive levels (3σ, 4σ, 5σ, 6σ) (Harry & Schroeder, 
2000; Pyzdek and Keller, 2014), now dominant in quality management. Despite Six Sigma's 
widespread adoption, no existing methodology systematically integrates these frameworks 
for smaller-the-better characteristics under sampling inspection. 

This study develops SBPCAM6σ addressing these limitations through three objectives. 
First, we establish mathematical relationships between Six Sigma levels and integrated 
capability standards (C₀ values) for multi-characteristic products using Cpu = σ_level/3. 
Second, we construct a framework with multiple parallel decision lines enabling 
simultaneous performance assessment and improvement target identification across sigma 
levels. Third, we integrate JCB methodology (Hsu, 2017) ensuring reliable assessment under 
sampling inspection, acknowledging uncertainty rather than presenting false precision 
through point estimates (Chen et al., 2009). 

 

2. Theoretical Framework 
 

2.1 Review of Traditional SBPCAM 
 

Hsu (2017) developed the smaller-the-better process capability analysis model 
(SBPCAM) to evaluate multi-characteristic products under sampling inspection. The model 
employs two indices: accuracy index A = μ/USL and precision index P = σ/USL, where μ is 
process mean, σ is standard deviation, and USL is upper specification limit. For smaller-the-
better characteristics, both indices should be minimized. 

Following Kane's (1986) original work on process capability indices, Hsu (2017) 
demonstrated that the process capability index Cpu can be expressed as: 

𝐶𝑝𝑢 =
𝑈𝑆𝐿 − 𝜇

3𝜎
=

1 − 𝐴

3𝑃
 

This formulation captures both accuracy and precision in a single metric. 

For multi-characteristic products with t characteristics, Ouyang et al. (2013) showed that 
achieving integrated capability c requires each characteristic to meet a stricter standard C₀: 

 
𝐶0 =

1

3
Φ−1 (

[2Φ(3𝐶) − 1]1/𝑡 + 1

2
) 
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where Φ denotes the standard normal cumulative distribution function. As t increases, 
individual capability requirements increase to maintain overall conformance probability. 

Setting Cpu = C₀ and substituting into the relationship above yields the decision line 
equation: 

𝐴 + 3𝐶0𝑃 = 1 

Characteristics plotting left of this line meet the capability requirement; those plotting 
right require improvement. 

Traditional SBPCAM uses four discrete standards (Chen et al., 2001; Pearn and Chen, 
1997): inadequate (c=1.00), capable (c=1.33), satisfactory (c=1.50), and superior (c=2.00). A 
single decision line is constructed for the selected standard. This approach distinguishes 
adequate from inadequate performance but provides limited intermediate targets for 
continuous improvement. 

2.2 Integration of Six Sigma Standards  
 

Six Sigma methodology defines process capability in terms of sigma levels, which 
quantify how many standard deviations fit between the process mean and the specification 
limit (Harry and Schroeder, 2000; Pyzdek and Keller, 2014). For smaller-the-better 
characteristics with USL as the only specification limit, the relationship between sigma level 
and Cpu is straightforward: 

𝐶𝑝𝑢 =
𝑈𝑆𝐿 − 𝜇

3𝜎
=

𝜎level

3
 

This yields: 3σ →Cpu=1.00, 4σ→Cpu=1.33, 5σ→Cpu=1.67, and 6σ→ Cpu=2.00. The 3σ, 4σ, 
and 6σ levels coincide with traditional standards while providing systematic graduated 
benchmarks aligned with Six Sigma methodology. 

Applying these c values to the C₀ formula for multi-characteristic products yields the 
graduated standards presented in Table 1, which presents the minimum individual 
characteristic capability for each sigma level. 

Table 1 The Process Capability Index C₀ for Multi-Characteristic Products under Six Sigma Standards 

t 
3σ 

(c=1.00) 
4σ 

(c=1.33) 
5σ 

(c=1.67) 
6σ 

(c=2.00) 

1 1.000 1.330 1.670 2.000 

2 1.068 1.384 1.714 2.037 

3 1.107 1.414 1.739 2.059 

4 1.133 1.436 1.757 2.074 

5 1.153 1.452 1.770 2.085 

6 1.170 1.465 1.781 2.095 

7 1.183 1.477 1.791 2.103 

8 1.195 1.486 1.799 2.110 

9 1.205 1.495 1.806 2.116 

10 1.214 1.502 1.812 2.121 

Table 1 shows that C₀ increases with both the number of characteristics t and the 
target sigma level, enabling organizations to establish incremental improvement targets 
aligned with their quality objectives. 
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2.3 The SBPCAM6σ Framework 

SBPCAM6σ employs four parallel decision lines. For a product with t characteristics: 

3σ decision line: 𝐴 + 3𝐶0(3𝜎)𝑃 = 1 

4σ decision line: 𝐴 + 3𝐶0(4𝜎)𝑃 = 1 

5σ decision line: 𝐴 + 3𝐶0(5𝜎)𝑃 = 1 

6σ decision line: 𝐴 + 3𝐶0(6𝜎)𝑃 = 1 

where C₀(kσ) denotes the C₀ value obtained from Table 1. These lines partition the A-P 
plane into regions corresponding to different performance levels. Figure 1 illustrates the 
framework for t = 5. 

 

 

Figure 1 The SBPCAM6σ Framework for Products with Five Quality Characteristics (t = 5) 

Characteristics plotting left of a line meet that sigma level. The framework provides 
graduated assessment, clear improvement targets, and natural integration with Six Sigma 
quality systems. Complete implementation procedures accounting for sampling inspection 
and estimation uncertainty are detailed in next section. 

3. SBPCAM6σ under Sampling Inspection Plan 

The SBPCAM6σ framework described above assumes known process parameters μ and 
σ, which are then used to calculate the accuracy index A = μ/USL and precision index P = 
σ/USL. However, in practical manufacturing environments, these parameters are rarely 
known with certainty and must be estimated from sample data collected through inspection 
procedures (Montgomery, 2009). 

While 100% inspection provides complete information about the production lot and 
eliminates sampling error, it is often impractical or economically infeasible due to resource 
constraints, time limitations, and inspection costs. Consequently, sampling inspection plans 
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are widely employed in quality control practice (Montgomery, 2009). Under sampling 
inspection, the observed sample mean x ̄ and sample standard deviation s serve as point 
estimates for μ and σ, respectively. These estimates are subject to sampling variability, 
introducing uncertainty into the calculated capability indices. 

Point estimates Â = x/̄USL and P̂ = s/USL may lead to incorrect conclusions (Chen et al., 
2009). A process truly meeting the required sigma level might be incorrectly classified as 
inadequate due to unfavorable sampling variation, or conversely, an inadequate process 
might appear acceptable due to a fortunate sample. This estimation uncertainty becomes 
critical when performance lies near decision lines, where small estimation errors can result 
in misclassification. 

To address this, we employ joint confidence blocks (JCB) to incorporate estimation 
uncertainty. By constructing confidence regions for A and P simultaneously, we account for 
sampling variability and provide more reliable capability assessments than point estimates 
alone. 

Consider a random sample of size n from a process with smaller-the-better 
characteristics. Under normality assumptions (Montgomery, 2009), simultaneous 
confidence intervals for A and P can be constructed. 

According to Boole's inequality, the 100(1-α)% joint confidence block for indices A and 
P can be derived as (Hsu, 2017): 

𝑃 {𝐴 − 𝑡α1/2(𝑛 − 1)
𝑃̂

√𝑛
≤ 𝐴 ≤ 𝐴 + 𝑡α1/2(𝑛 − 1)

𝑃̂

√𝑛
,

(𝑛 − 1)𝑃2̂

χα2/2
2 (𝑛 − 1)

≤ 𝑃2

≤
(𝑛 − 1)𝑃2̂

χ1−α2/2
2 (𝑛 − 1)

} ≥ 1 − α1 − α2 

where 𝑡𝛼1/2(𝑛 − 1) denotes the t distribution percentile, 𝜒𝛼2/2
2 (𝑛 − 1) and 

𝜒1−𝛼2/2
2 (𝑛 − 1) denote χ² distribution percentiles, and Â = x/̄USL, P̂ = s/USL. 

Setting α₁ = α₂ = α/2, the Cartesian product 𝑆(𝑋) = [𝐴1, 𝐴2] × [𝑃1 , 𝑃2] where: 

𝐴1 = 𝐴 − 𝑡α/4(𝑛 − 1)
𝑃̂

√𝑛
 , 𝐴2 = 𝐴 + 𝑡α/4(𝑛 − 1)

𝑃̂

√𝑛
 

𝑃1 = [
(𝑛−1)𝑃̂2

χ1−α/4
2 (𝑛−1)

]
1/2

, 𝑃2 = [
(𝑛−1)𝑃̂2

χα/4
2 (𝑛−1)

]
1/2

 

The JCB represents a rectangular confidence region in the A-P plane containing the true 
values with probability at least 1-α (Hsu, 2017). 

The implementation procedure integrates graduated sigma standards with JCB 
methodology (Hsu, 2017): 

Step 1: Specification and Planning. Determine the total number of quality 
characteristics t and obtain C₀ values for all sigma levels (3σ, 4σ, 5σ, 6σ) from Table 1. 

Step 2: Framework Construction. Construct the SBPCAM6σ chart by plotting four 
decision lines in the A-P coordinate plane using the equation A + 3C₀(kσ)P = 1 for k = 3, 4, 5, 
6. 
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Step 3: Data Collection and JCB Calculation. For each quality characteristic, set the 
confidence level 1-α (typically α = 0.05), collect a random sample of size n from the process, 
calculate sample mean x ̄ and sample standard deviation s, compute point estimates Â = 
x/̄USL and P̂ = s/USL, then calculate the JCB boundaries [A₁, A₂] × [P₁, P₂] using the formulas 
provided above. 

Step 4: Graphical Representation. Plot each quality characteristic's JCB as a rectangular 
region on the SBPCAM6σ chart, where each rectangle represents the confidence region for 
that characteristic's true (A, P) location. 

Step 5: Capability Assessment. Assess sigma level performance by examining the position 
of each JCB relative to the decision lines. If the entire JCB lies to the left of a decision line, 
the characteristic meets that sigma level with high confidence. If the entire JCB lies to the 
right of a decision line, the characteristic fails to meet that sigma level. If the JCB intersects 
a decision line, the assessment is inconclusive at the given confidence level, indicating the 
need for additional sampling. 

Step 6: Improvement Prioritization. Prioritize improvement efforts by focusing on 
characteristics whose JCBs lie entirely to the right of the target sigma level or intersect 
critical decision lines, considering both the strategic importance of each characteristic and 
the effort required for enhancement. 

This approach ensures that capability assessments account for sampling uncertainty 
(Chen et al., 2009) while providing clear guidance for continuous improvement aligned with 
Six Sigma principles (Pyzdek and Keller, 2014). 

4. Numerical Example 

To demonstrate SBPCAM6σ application, we employ the 92-octane gasoline quality 
control case from Hsu (2017). This fuel grade, commonly used in high-altitude regions, 
requires quality consistency for engine performance, fuel efficiency, and emissions control. 
Substandard quality causes engine knocking, vapor lock, deposit accumulation, and 
increased emissions. 

The quality is characterized by five smaller-the-better attributes where lower values 
indicate superior performance: 

1. 10% distillation temperature (x₁): Temperature at which 10% evaporates  

2. 50% distillation temperature (x₂): Mid-point distillation temperature  

3. 90% distillation temperature (x₃): Temperature at which 90% evaporates  

4. End-point distillation temperature (x₄): Final evaporation temperature  

5. Residue oil (x₅): Remaining non-volatile content 

The manufacturer aims to assess whether current production capability meets 4σ 
performance standards (Pyzdek and Keller, 2014) while identifying improvement 
opportunities toward higher sigma levels. 

A sampling inspection plan was implemented with sample size n = 20 for each 
characteristic at confidence level 1 - α = 0.95. The choice of n = 20 is justified by several 
considerations. First, from a statistical theory perspective, this sample size is adequate for 
reliable application of both the t-distribution (for estimating the mean) and χ²-distribution 
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(for estimating variance) in constructing JCBs, as both distributions achieve reasonable 
stability with n ≥ 20 (Montgomery, 2009). Second, n = 20 represents a practical balance 
between statistical precision and resource constraints in industrial quality control settings. 
While larger samples would narrow confidence intervals, Montgomery (2009) demonstrates 
that samples of 20-25 observations provide sufficient precision for process capability studies 
while remaining economically feasible for routine quality monitoring. Third, this sample size 
aligns with established practice in the process capability literature; Hsu (2017) employed n 
= 20 in the original SBPCAM framework, and similar sampling plans are common in JCB 
applications (Chen et al., 2009). The resulting JCB width reflects both the inherent process 
variability and the sampling uncertainty at this sample size, enabling honest assessment of 
whether capability conclusions can be drawn with confidence or whether additional data 
collection is warranted. 

With t = 5 characteristics, the C₀ values from Table 1 are: C₀(3σ) = 1.153, C₀(4σ) =1.452, 
C₀(5σ)=1.770, and C₀(6σ)=2.085, yielding the corresponding decision lines A+3.459P=1, 
A+4.356P=1, A+5.310P=1, and A+6.255P=1 for the 3σ, 4σ, 5σ, and 6σ levels, respectively 
(Ouyang et al., 2013). 

Table 2 presents upper specification limits and calculated JCB boundaries (Hsu, 2017) 
for accuracy and precision indices. 

Table 1 Specifications and JCB Results for 92-Octane Gasoline Quality Characteristics 

 

Characteristic USL A₁ A₂ P₁ P₂ 

10% distillation temp (x₁) 70 0.75 0.79 0.03 0.05 

50% distillation temp (x₂) 121 0.74 0.77 0.03 0.05 

90% distillation temp (x₃) 190 0.84 0.87 0.02 0.04 

End-point distillation temp (x₄) 225 0.93 0.95 0.02 0.03 

Residue oil (x₅) 2 0.48 0.55 0.06 0.11 

Note: Temperature specifications in °C; residue oil in %. 

Figure 2 displays the SBPCAM6σ chart with the four decision lines and the JCB 
rectangles for all five characteristics, revealing the uncertainty inherent in sampling-based 
evaluation. 
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Figure 2 SBPCAM6σ Analysis for 92-Octane Gasoline Quality Characteristics (t=5, n=20, σ=0.05) 

 

The JCB-based assessment yields three categories of results reflecting different 
confidence levels: 

Characteristic x₄ (end-point distillation temperature): The JCB lies entirely right of the 4σ 
line, confirming failure to meet 4σ standards. More critically, the JCB intersects the 3σ line 
with three corners falling right of this baseline standard, indicating x₄ barely meets 3σ 
requirements. This represents the most severe capability deficiency, requiring urgent 
improvement. 

Characteristic x₂ (50% distillation temperature): he JCB lies entirely left of the 4σ line, 
definitively meeting this level. However, the JCB intersects the 5σ line, leaving 5σ 
achievement uncertain. 

Characteristics x₁, x₃, and x₅: These exhibit JCBs intersecting multiple decision lines. For 
x₁, the confidence block crosses 4σ, 5σ, and 6σ lines with corners in different performance 
regions. Similarly, x₃ and x₅ display JCBs spanning multiple sigma zones. With current sample 
size (n=20), precise sigma level performance cannot be definitively determined. 

JCB-decision line intersections might initially appear limiting. However, this reflects the 
method's fundamental strength: honest reporting of statistical uncertainty. Point estimates 
using Â = x/̄USL and P̂ = s/USL would suggest x₁, x₂, and x₅ all pass 5σ standards while x₃ 
passes 4σ but fails 5σ—conclusions that appear definitive but ignore sampling variability 
(Hsu, 2017). The JCB analysis reveals such certainty is unwarranted, with most 
characteristics requiring additional data before confident sigma level assignment. 

This conservative approach prevents two critical errors: (1) falsely concluding adequate 
performance when capability remains uncertain, and (2) incorrectly identifying deficiencies 
based on sampling artifacts rather than genuine process issues. 
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The SBPCAM6σ with JCB analysis provides a structured framework for prioritizing quality 
improvement actions while appropriately accounting for statistical uncertainty (Pyzdek and 
Keller, 2014): 

Priority 1: Urgent Improvement Required (x₄). End-point distillation temperature 
requires immediate attention. Analysis confirms failure to meet 4σ and barely achieves 3σ 
performance. This critical quality issue requires comprehensive process investigation. 
Priority areas include: column temperature control system evaluation, heating rate 
stabilization through improved energy management, raw material composition variability 
reduction, and operator procedure standardization. The improvement trajectory: first 
ensure consistent 3σ compliance, then advance toward 4σ, ultimately targeting 5σ. Given 
current sub-3σ borderline performance, initial efforts should focus on fundamental process 
stabilization. 

Priority 2: Require Additional Data Collection (x₁, x₃, x₅). These characteristics display JCB-
decision line intersections, indicating insufficient evidence for definitive sigma level 
determination. Two approaches: increase sample size beyond n = 20 to narrow confidence 
regions, or implement continuous monitoring to accumulate data over time. Until definitive 
data are available, manage these conservatively—assuming higher sigma levels (5σ or 6σ) 
are not achieved until proven otherwise. 

Maintain and Document (x₂). The 50% distillation temperature definitively meets 4σ 
standards. Document and maintain current control practices. If targeting 5σ performance, 
additional sampling would determine achievement of this higher standard. 

Methodological Implications. This case demonstrates three critical advantages: First, 
honest uncertainty quantification (Chen et al., 2009) - explicitly identifying which 
conclusions are statistically supported and which require additional evidence. This 
transparency supports better resource allocation. Second, graduated sigma standards offer 
clear improvement trajectories with concrete objectives rather than vague directives. Third, 
the approach prevents decision errors from sampling variability, guarding against both false 
positive and false negative conclusions. 

"Inconclusive" is not method failure but appropriate acknowledgment of statistical 
reality. In quality management, making no decision until sufficient evidence is available is 
preferable to making confident but incorrect decisions based on inadequate data. 

Applying SBPCAM6σ to the same dataset enables direct comparison with Hsu's (2017) 
analysis. Hsu employed a single decision line (c = 1.33, C₀ = 1.452), concluding only x₄ 
required improvement while x₁, x₂, x₃, and x₅ met capable standard. Our graduated approach 
reveals important differences summarized in Table 3. 

Table 3 Comparison of Hsu (2017) and SBPCAM6σ Approaches 

Aspect Hsu (2017) SBPCAM6σ (This Study) 

Decision Lines Single (c=1.33) Four (3σ, 4σ, 5σ, 6σ) 

Performance Standards Fixed "capable" Graduated Six Sigma 

x₄ Assessment Fails capable Barely meets 3σ (critical) 

x₂ Assessment Meets capable Confirmed 4σ 

x₁, x₃, x₅ Assessment Meet capable Inconclusive (n=20 insufficient) 

Improvement Guidance Binary deficiency identification Graduated targets with uncertainty acknowledgment 

SBPCAM6σ provides three key enhancements: (1) graduated assessment revealing x₄'s 
deficiency is more severe than single-threshold evaluation suggests—barely meeting 3σ 
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rather than simply failing 4σ; (2) transparent uncertainty through explicit JCB-decision line 
intersections, indicating that while Hsu concluded x₁, x₃, and x₅ definitively met standards, 
current sample size yields inconclusive assessments; and (3) aligned improvement planning 
through Six Sigma targets integrating naturally with organizational quality management 
systems. These enhancements preserve Hsu's valuable JCB methodology while extending 
capability analysis to support systematic continuous improvement aligned with 
contemporary quality frameworks. 

5. Conclusions 

This study developed SBPCAM6σ, integrating Six Sigma graduated standards with joint 
confidence block methodology for multi-characteristic process capability assessment. The 
framework replaces traditional fixed classifications with four parallel decision lines (3σ, 4σ, 
5σ, 6σ), enabling systematic performance evaluation aligned with contemporary quality 
management practices. 

The SBPCAM6σ extends Hsu's (2017) original framework by incorporating graduated 
benchmarks rather than single-threshold evaluation. Through the relationship Cpu = 
σ_level/3, we derived C₀ values for each sigma level across t = 1 to 10 characteristics. JCB 
integration ensures assessments acknowledge sampling uncertainty rather than presenting 
false precision. The 92-octane gasoline case study demonstrated three practical advantages: 
revealing problem severity more precisely (x₄ barely meets 3σ, not merely failing 4σ), 
explicitly identifying inconclusive assessments requiring additional data, and providing 
graduated improvement targets aligned with Six Sigma methodology. 

The research contributes theoretically by bridging capability indices and Six Sigma 
frameworks, moving process evaluation from binary classification toward continuous 
performance measurement. Methodologically, explicit JCB-decision line intersections 
transform uncertainty from implicit limitation to explicit decision criterion. Practically, the 
framework provides actionable guidance—clear statistical targets, visual assessment of 
multiple characteristics, and natural integration with organizational quality systems. 

Three limitations warrant acknowledgment. First, normality assumptions may not hold 
for all quality characteristics. Second, higher sigma levels do not universally represent 
optimal targets; cost-quality considerations may justify 4σ as appropriate endpoints in 
specific contexts. Third, typical sample sizes (n = 20) frequently yield JCB-decision line 
intersections, producing inconclusive assessments that require either larger samples or 
acceptance of uncertainty. 

Future research should pursue two directions. First, developing optimal sample size 
determination methods that balance statistical confidence with resource constraints would 
enhance practical applicability, particularly for characteristics exhibiting JCB-decision line 
intersections. Second, extending the framework to nominal-the-better and larger-the-better 
characteristics would provide comprehensive capability analysis across all quality attribute 
types (Spiring et al., 2003), creating a unified Six Sigma-based assessment methodology. 

The SBPCAM6σ advances process capability analysis by aligning traditional assessment 
with Six Sigma practices while maintaining statistical rigor. The framework provides quality 
practitioners with enhanced decision-making tools that acknowledge uncertainty explicitly, 
support graduated improvement planning, and integrate naturally with contemporary 
quality management systems. 
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