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A Six Sigma-Based Process Capability Analysis Model
with Joint Confidence Blocks for Smaller-the-Better
Characteristics
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Abstract: Process capability indices (PCls) are essential tools for quality assessment, yet existing
methods face critical limitations. Traditional capability analysis relies on fixed classification standards
(inadequate, capable, satisfactory, superior) that lack sufficient granularity for continuous improvement
and do not align with Six Sigma methodology, now dominant in quality management. Furthermore,
conventional approaches using point estimates fail to account for sampling uncertainty, potentially
leading to erroneous capability conclusions. This study develops a Six Sigma-based smaller-the-better
process capability analysis model (SBPCAMG60) that addresses these limitations. The model establishes
mathematical relationships between Six Sigma performance levels (3o, 40, 50, 60) and integrated
capability standards (Co values) for multi-characteristic products, creating a framework with four
parallel decision lines that enable graduated performance assessment. By integrating joint confidence
block (JCB) methodology, the approach explicitly acknowledges sampling uncertainty rather than
presenting spurious precision through point estimates. Application to a 92-octane gasoline quality
control case demonstrates the framework's practical advantages. Compared with single-threshold
methods, SBPCAMG6c provides more precise problem severity identification, transparent uncertainty
communication, and graduated improvement targets aligned with organizational Six Sigma initiatives.
The framework preserves valuable JCB methodology while extending capability analysis to support
systematic continuous improvement with contemporary quality management practices.
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1. Introduction

Process capability indices (PCls) have become essential quality assessment tools since Juran
(1974) established their foundational framework. The smaller-the-better index Cpuis particularly
relevant for quality characteristics where lower values indicate superior performance, such as

defect rates, contamination levels, or dimensional deviations.
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Modern products possess multiple quality characteristics that must simultaneously meet
specifications. Chen et al. (2006) demonstrated that multi-characteristic products require
individual characteristics to achieve higher capability levels than single-characteristic items.
Ouyang et al. (2013) developed the integrated capability index Co to determine minimum
individual characteristic requirements for multi-process products. Various multi-process
capability analysis methods have emerged, including Singhal's (1990) MPPAC, Pearn and
Shu's (2003) modified Cpk MPPAC, and Chen and Chen's (2007) AMPPAC. Hsu (2017)
developed SBPCAM incorporating joint confidence blocks (JCB) to address sampling
uncertainty in practical inspection scenarios.

Existing methods face a critical limitation: fixed classification standards categorizing
processes as inadequate (c < 1.00), capable (1.00 < ¢ < 1.33), satisfactory (1.33 < c < 1.50),
or superior (c 2 2.00) (Pearn and Chen, 1997). These standards present three drawbacks.
First, four discrete levels lack granularity for continuous improvement. Second, large gaps
between thresholds provide limited intermediate milestones. Third, fixed standards do not
align with Six Sigma methodology's progressive levels (30, 40, 50, 60) (Harry & Schroeder,
2000; Pyzdek and Keller, 2014), now dominant in quality management. Despite Six Sigma's
widespread adoption, no existing methodology systematically integrates these frameworks
for smaller-the-better characteristics under sampling inspection.

This study develops SBPCAM60 addressing these limitations through three objectives.
First, we establish mathematical relationships between Six Sigma levels and integrated
capability standards (Co values) for multi-characteristic products using Cou = o_level/3.
Second, we construct a framework with multiple parallel decision lines enabling
simultaneous performance assessment and improvement target identification across sigma
levels. Third, we integrate JCB methodology (Hsu, 2017) ensuring reliable assessment under
sampling inspection, acknowledging uncertainty rather than presenting false precision
through point estimates (Chen et al., 2009).

2. Theoretical Framework

2.1 Review of Traditional SBPCAM

Hsu (2017) developed the smaller-the-better process capability analysis model
(SBPCAM) to evaluate multi-characteristic products under sampling inspection. The model
employs two indices: accuracy index A = u/USL and precision index P = 6/USL, where . is
process mean, o is standard deviation, and USL is upper specification limit. For smaller-the-
better characteristics, both indices should be minimized.

Following Kane's (1986) original work on process capability indices, Hsu (2017)
demonstrated that the process capability index Cpu can be expressed as:

_USL—pu 1-A
U 35 3P

This formulation captures both accuracy and precision in a single metric.

For multi-characteristic products with t characteristics, Ouyang et al. (2013) showed that
achieving integrated capability c requires each characteristic to meet a stricter standard Co:
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where ® denotes the standard normal cumulative distribution function. As t increases,
individual capability requirements increase to maintain overall conformance probability.

Setting Cpu = Co and substituting into the relationship above yields the decision line
equation:

A+3C,P=1

Characteristics plotting left of this line meet the capability requirement; those plotting
right require improvement.

Traditional SBPCAM uses four discrete standards (Chen et al., 2001; Pearn and Chen,
1997): inadequate (c=1.00), capable (c=1.33), satisfactory (c=1.50), and superior (c=2.00). A
single decision line is constructed for the selected standard. This approach distinguishes
adequate from inadequate performance but provides limited intermediate targets for
continuous improvement.

2.2 Integration of Six Sigma Standards

Six Sigma methodology defines process capability in terms of sigma levels, which
quantify how many standard deviations fit between the process mean and the specification
limit (Harry and Schroeder, 2000; Pyzdek and Keller, 2014). For smaller-the-better
characteristics with USL as the only specification limit, the relationship between sigma level
and Cpu is straightforward:

_ USL — u _ Olevel
pu 30 3

This yields: 30 - Cpu=1.00, 46->Cpu=1.33, 56>Cpu=1.67, and 606> Cpu=2.00. The 30, 40,
and 60 levels coincide with traditional standards while providing systematic graduated
benchmarks aligned with Six Sigma methodology.

Applying these c values to the Co formula for multi-characteristic products yields the
graduated standards presented in Table 1, which presents the minimum individual
characteristic capability for each sigma level.

Table 1 The Process Capability Index Co for Multi-Characteristic Products under Six Sigma Standards

t 30 40 50 60
(c=1.00) (c=1.33) (c=1.67) (c=2.00)
1 1.000 1.330 1.670 2.000
2 1.068 1.384 1.714 2.037
3 1.107 1414 1.739 2.059
4 1.133 1.436 1.757 2.074
5 1.153 1.452 1.770 2.085
6 1.170 1.465 1.781 2.095
7 1.183 1.477 1.791 2.103
8 1.195 1.486 1.799 2.110
9 1.205 1.495 1.806 2.116
10 1.214 1.502 1.812 2.121

Table 1 shows that Co increases with both the number of characteristics t and the
target sigma level, enabling organizations to establish incremental improvement targets
aligned with their quality objectives.
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2.3 The SBPCAM66G Framework
SBPCAMG60 employs four parallel decision lines. For a product with t characteristics:
3o decision line: A + 3Cy3HP =1
4o decision line: A + 3Cy40 )P = 1
50 decision line: A + 3CysHP = 1
60 decision line: A + 3Cy6HP =1

where Co(ko) denotes the Co value obtained from Table 1. These lines partition the A-P
plane into regions corresponding to different performance levels. Figure 1 illustrates the
framework for t = 5.

SBPCAM Decision Lines (t = 5)

Sigma Level
30
40
— 50

0.35 60

0.05f

00g)

1.0 1.2

Figure 1 The SBPCAM6c Framework for Products with Five Quality Characteristics (t = 5)

Characteristics plotting left of a line meet that sigma level. The framework provides
graduated assessment, clear improvement targets, and natural integration with Six Sigma
quality systems. Complete implementation procedures accounting for sampling inspection
and estimation uncertainty are detailed in next section.

3. SBPCAMO66 under Sampling Inspection Plan

The SBPCAM60 framework described above assumes known process parameters p and
o, which are then used to calculate the accuracy index A = p/USL and precision index P =
o/USL. However, in practical manufacturing environments, these parameters are rarely
known with certainty and must be estimated from sample data collected through inspection
procedures (Montgomery, 2009).

While 100% inspection provides complete information about the production lot and
eliminates sampling error, it is often impractical or economically infeasible due to resource
constraints, time limitations, and inspection costs. Consequently, sampling inspection plans
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are widely employed in quality control practice (Montgomery, 2009). Under sampling
inspection, the observed sample mean X and sample standard deviation s serve as point
estimates for u and o, respectively. These estimates are subject to sampling variability,
introducing uncertainty into the calculated capability indices.

Point estimates A = x/USL and P = s/USL may lead to incorrect conclusions (Chen et al.,
2009). A process truly meeting the required sigma level might be incorrectly classified as
inadequate due to unfavorable sampling variation, or conversely, an inadequate process
might appear acceptable due to a fortunate sample. This estimation uncertainty becomes
critical when performance lies near decision lines, where small estimation errors can result
in misclassification.

To address this, we employ joint confidence blocks (JCB) to incorporate estimation
uncertainty. By constructing confidence regions for A and P simultaneously, we account for
sampling variability and provide more reliable capability assessments than point estimates
alone.

Consider a random sample of size n from a process with smaller-the-better
characteristics. Under normality assumptions (Montgomery, 2009), simultaneous
confidence intervals for A and P can be constructed.

According to Boole's inequality, the 100(1-a)% joint confidence block for indices A and
P can be derived as (Hsu, 2017):

- P ~ P
P{A—tal/z(n—l)\/—%sA SA+ta1/2(n—1)ﬁ,

(n — 1)P2

I A— T
Xo(z/z(n - 1)

(n—1)P?
S5———F—=(=21l—-o —q
Xl—az/z(n - 1)

where t,, ;2(n — 1) denotes the t distribution percentile, Xéz/z (n—1)and
)(f_az/z(n — 1) denote ¥ distribution percentiles, and A = x/USL, P = s/USL.

Setting ay = a, = a/2, the Cartesian product S(X) = [4;, 4] X [Py, P,] where:

A2 = A‘}‘ ta/4(n_ l)i
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The JCB represents a rectangular confidence region in the A-P plane containing the true
values with probability at least 1-a (Hsu, 2017).

The implementation procedure integrates graduated sigma standards with JCB
methodology (Hsu, 2017):

Step 1: Specification and Planning. Determine the total number of quality
characteristics t and obtain Co values for all sigma levels (30, 40, 50, 60) from Table 1.

Step 2: Framework Construction. Construct the SBPCAMG6c chart by plotting four
decision lines in the A-P coordinate plane using the equation A + 3Co(ko)P =1 fork =3, 4,5,
6.



22 Chang-Hsien Hsu, Yin-Chieh Su, Chen-Ning Chang

Step 3: Data Collection and JCB Calculation. For each quality characteristic, set the
confidence level 1-a (typically a = 0.05), collect a random sample of size n from the process,
calculate sample mean % and sample standard deviation s, compute point estimates A =
%/USL and P = s/USL, then calculate the JCB boundaries [A;, A;] x [P1, P2] using the formulas
provided above.

Step 4: Graphical Representation. Plot each quality characteristic's JCB as a rectangular
region on the SBPCAMG60 chart, where each rectangle represents the confidence region for
that characteristic's true (A, P) location.

Step 5: Capability Assessment. Assess sigma level performance by examining the position
of each JCB relative to the decision lines. If the entire JCB lies to the left of a decision line,
the characteristic meets that sigma level with high confidence. If the entire JCB lies to the
right of a decision line, the characteristic fails to meet that sigma level. If the JCB intersects
a decision line, the assessment is inconclusive at the given confidence level, indicating the
need for additional sampling.

Step 6: Improvement Prioritization. Prioritize improvement efforts by focusing on
characteristics whose JCBs lie entirely to the right of the target sigma level or intersect
critical decision lines, considering both the strategic importance of each characteristic and
the effort required for enhancement.

This approach ensures that capability assessments account for sampling uncertainty
(Chen et al., 2009) while providing clear guidance for continuous improvement aligned with
Six Sigma principles (Pyzdek and Keller, 2014).

4. Numerical Example

To demonstrate SBPCAMG60 application, we employ the 92-octane gasoline quality
control case from Hsu (2017). This fuel grade, commonly used in high-altitude regions,
requires quality consistency for engine performance, fuel efficiency, and emissions control.
Substandard quality causes engine knocking, vapor lock, deposit accumulation, and
increased emissions.

The quality is characterized by five smaller-the-better attributes where lower values
indicate superior performance:

1. 10% distillation temperature (x;): Temperature at which 10% evaporates
2.  50% distillation temperature (x,): Mid-point distillation temperature

3.  90% distillation temperature (x3): Temperature at which 90% evaporates
4. End-point distillation temperature (x4): Final evaporation temperature
5. Residue oil (xs): Remaining non-volatile content

The manufacturer aims to assess whether current production capability meets 4o
performance standards (Pyzdek and Keller, 2014) while identifying improvement
opportunities toward higher sigma levels.

A sampling inspection plan was implemented with sample size n = 20 for each
characteristic at confidence level 1 - a = 0.95. The choice of n = 20 is justified by several
considerations. First, from a statistical theory perspective, this sample size is adequate for
reliable application of both the t-distribution (for estimating the mean) and x2-distribution
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(for estimating variance) in constructing JCBs, as both distributions achieve reasonable
stability with n 2 20 (Montgomery, 2009). Second, n = 20 represents a practical balance
between statistical precision and resource constraints in industrial quality control settings.
While larger samples would narrow confidence intervals, Montgomery (2009) demonstrates
that samples of 20-25 observations provide sufficient precision for process capability studies
while remaining economically feasible for routine quality monitoring. Third, this sample size
aligns with established practice in the process capability literature; Hsu (2017) employed n
= 20 in the original SBPCAM framework, and similar sampling plans are common in JCB
applications (Chen et al., 2009). The resulting JCB width reflects both the inherent process
variability and the sampling uncertainty at this sample size, enabling honest assessment of
whether capability conclusions can be drawn with confidence or whether additional data
collection is warranted.

With t = 5 characteristics, the Co values from Table 1 are: Co(30) = 1.153, Co(40) =1.452,
Co(50)=1.770, and Co(60)=2.085, yielding the corresponding decision lines A+3.459P=1,
A+4.356P=1, A+5.310P=1, and A+6.255P=1 for the 30, 40, 50, and 60 levels, respectively
(Ouyang et al., 2013).

Table 2 presents upper specification limits and calculated JCB boundaries (Hsu, 2017)
for accuracy and precision indices.

Table 1 specifications and JCB Results for 92-Octane Gasoline Quality Characteristics

Characteristic USL Ay Az P, P,
10% distillation temp (x1) 70 0.75 0.79 0.03 0.05
50% distillation temp (x2) 121 0.74 0.77 0.03 0.05
90% distillation temp (x3) 190 0.84 0.87 0.02 0.04
End-point distillation temp (x4) 225 0.93 0.95 0.02 0.03
Residue oil (xs) 2 0.48 0.55 0.06 0.11

Note: Temperature specifications in °C; residue oil in %.

Figure 2 displays the SBPCAM®60 chart with the four decision lines and the JCB
rectangles for all five characteristics, revealing the uncertainty inherent in sampling-based
evaluation.
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Figure 2 SBPCAMG60 Analysis for 92-Octane Gasoline Quality Characteristics (t=5, n=20, 0=0.05)

The JCB-based assessment yields three categories of results reflecting different
confidence levels:

Characteristic x4 (end-point distillation temperature): The JCB lies entirely right of the 40
line, confirming failure to meet 4o standards. More critically, the JCB intersects the 3o line
with three corners falling right of this baseline standard, indicating x, barely meets 3o
requirements. This represents the most severe capability deficiency, requiring urgent
improvement.

Characteristic x, (50% distillation temperature): he JCB lies entirely left of the 4c line,
definitively meeting this level. However, the JCB intersects the 50 line, leaving 50
achievement uncertain.

Characteristics xi, X3, and xs: These exhibit JCBs intersecting multiple decision lines. For
X1, the confidence block crosses 4o, 50, and 60 lines with corners in different performance
regions. Similarly, xs and xs display JCBs spanning multiple sigma zones. With current sample
size (n=20), precise sigma level performance cannot be definitively determined.

JCB-decision line intersections might initially appear limiting. However, this reflects the
method's fundamental strength: honest reporting of statistical uncertainty. Point estimates
using A = x/USL and P = s/USL would suggest xi, X», and xs all pass 56 standards while xs
passes 4o but fails 50—conclusions that appear definitive but ignore sampling variability
(Hsu, 2017). The JCB analysis reveals such certainty is unwarranted, with most
characteristics requiring additional data before confident sigma level assignment.

This conservative approach prevents two critical errors: (1) falsely concluding adequate
performance when capability remains uncertain, and (2) incorrectly identifying deficiencies
based on sampling artifacts rather than genuine process issues.
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The SBPCAM60 with JCB analysis provides a structured framework for prioritizing quality
improvement actions while appropriately accounting for statistical uncertainty (Pyzdek and
Keller, 2014):

Priority 1: Urgent Improvement Required (xs). End-point distillation temperature
requires immediate attention. Analysis confirms failure to meet 40 and barely achieves 30
performance. This critical quality issue requires comprehensive process investigation.
Priority areas include: column temperature control system evaluation, heating rate
stabilization through improved energy management, raw material composition variability
reduction, and operator procedure standardization. The improvement trajectory: first
ensure consistent 30 compliance, then advance toward 4o, ultimately targeting 50. Given
current sub-3o borderline performance, initial efforts should focus on fundamental process
stabilization.

Priority 2: Require Additional Data Collection (x4, X3, Xs). These characteristics display JCB-
decision line intersections, indicating insufficient evidence for definitive sigma level
determination. Two approaches: increase sample size beyond n = 20 to narrow confidence
regions, or implement continuous monitoring to accumulate data over time. Until definitive
data are available, manage these conservatively—assuming higher sigma levels (50 or 60)
are not achieved until proven otherwise.

Maintain and Document (x;). The 50% distillation temperature definitively meets 4o
standards. Document and maintain current control practices. If targeting 50 performance,
additional sampling would determine achievement of this higher standard.

Methodological Implications. This case demonstrates three critical advantages: First,
honest uncertainty quantification (Chen et al., 2009) - explicitly identifying which
conclusions are statistically supported and which require additional evidence. This
transparency supports better resource allocation. Second, graduated sigma standards offer
clear improvement trajectories with concrete objectives rather than vague directives. Third,
the approach prevents decision errors from sampling variability, guarding against both false
positive and false negative conclusions.

"Inconclusive" is not method failure but appropriate acknowledgment of statistical
reality. In quality management, making no decision until sufficient evidence is available is
preferable to making confident but incorrect decisions based on inadequate data.

Applying SBPCAMG60 to the same dataset enables direct comparison with Hsu's (2017)
analysis. Hsu employed a single decision line (c = 1.33, Co = 1.452), concluding only x4
required improvement while x;, X2, X3, and xs met capable standard. Our graduated approach
reveals important differences summarized in Table 3.

Table 3 Comparison of Hsu (2017) and SBPCAM60 Approaches

Aspect Hsu (2017) SBPCAMG60 (This Study)
Decision Lines Single (c=1.33) Four (30, 40, 50, 60)
Performance Standards Fixed "capable" Graduated Six Sigma
X4 Assessment Fails capable Barely meets 30 (critical)
X2 Assessment Meets capable Confirmed 40
X1, X3, Xs Assessment Meet capable Inconclusive (n=20 insufficient)

Improvement Guidance Binary deficiency identification Graduated targets with uncertainty acknowledgment

SBPCAMG60 provides three key enhancements: (1) graduated assessment revealing x4's
deficiency is more severe than single-threshold evaluation suggests—barely meeting 3o
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rather than simply failing 40; (2) transparent uncertainty through explicit JCB-decision line
intersections, indicating that while Hsu concluded x4, x3, and xs definitively met standards,
current sample size yields inconclusive assessments; and (3) aligned improvement planning
through Six Sigma targets integrating naturally with organizational quality management
systems. These enhancements preserve Hsu's valuable JCB methodology while extending
capability analysis to support systematic continuous improvement aligned with
contemporary quality frameworks.

5. Conclusions

This study developed SBPCAMG60, integrating Six Sigma graduated standards with joint
confidence block methodology for multi-characteristic process capability assessment. The
framework replaces traditional fixed classifications with four parallel decision lines (30, 40,
50, 60), enabling systematic performance evaluation aligned with contemporary quality
management practices.

The SBPCAMG60 extends Hsu's (2017) original framework by incorporating graduated
benchmarks rather than single-threshold evaluation. Through the relationship Cpu =
o_level/3, we derived Co values for each sigma level across t = 1 to 10 characteristics. JCB
integration ensures assessments acknowledge sampling uncertainty rather than presenting
false precision. The 92-octane gasoline case study demonstrated three practical advantages:
revealing problem severity more precisely (x5 barely meets 30, not merely failing 40),
explicitly identifying inconclusive assessments requiring additional data, and providing
graduated improvement targets aligned with Six Sigma methodology.

The research contributes theoretically by bridging capability indices and Six Sigma
frameworks, moving process evaluation from binary classification toward continuous
performance measurement. Methodologically, explicit JCB-decision line intersections
transform uncertainty from implicit limitation to explicit decision criterion. Practically, the
framework provides actionable guidance—clear statistical targets, visual assessment of
multiple characteristics, and natural integration with organizational quality systems.

Three limitations warrant acknowledgment. First, normality assumptions may not hold
for all quality characteristics. Second, higher sigma levels do not universally represent
optimal targets; cost-quality considerations may justify 40 as appropriate endpoints in
specific contexts. Third, typical sample sizes (n = 20) frequently yield JCB-decision line
intersections, producing inconclusive assessments that require either larger samples or
acceptance of uncertainty.

Future research should pursue two directions. First, developing optimal sample size
determination methods that balance statistical confidence with resource constraints would
enhance practical applicability, particularly for characteristics exhibiting JCB-decision line
intersections. Second, extending the framework to nominal-the-better and larger-the-better
characteristics would provide comprehensive capability analysis across all quality attribute
types (Spiring et al., 2003), creating a unified Six Sigma-based assessment methodology.

The SBPCAMG60c advances process capability analysis by aligning traditional assessment
with Six Sigma practices while maintaining statistical rigor. The framework provides quality
practitioners with enhanced decision-making tools that acknowledge uncertainty explicitly,
support graduated improvement planning, and integrate naturally with contemporary
quality management systems.
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